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Objectives

* Quantify theimpact of coupled hydrological and geochemical
processes on the fate and transport of dissolved organic C through
the EBI S sail profiles.

e Quantify the mechanismsthat control enhanced carbon
accumulation within deep subsoils of forested Ultisolsand
| nceptisols.



Background

Widespread, highly developed mature soils such as Ultisols and some I nceptisols

have deep soil profilesthat have a tremendous capacity to sequester organic
C that has been made soluble from surface horizons.

The seizure and stockpiling of organic C within the subsoil decreasestherate

of carbon turnover by orders of magnituderelativeto upper A/B and E/B
horizons.

Ultisol devoid of organic C Ultisol enriched with organic C




Example of deep profile organic C sequestration

Anthropogenically enriched _ _ _
s0il of the Amazon Adjacent unenriched soil

"

These soils are from the same physiographic position and have the same

clay content and clay mineralogy. The soil on the left was enriched by

ancient human occupation centuries ago; theright is unenriched. Thisillustrates
that such soil enrichments can be maintained for several centuries.



| mportance of soil structure

Well structured subsoils consist of a complex
continuum of poreregimesranging from

macr opor es at the mm scale to micropores at the
sub-im scale.

The porestructure of the mediais hydrologically
inter connected where water and solute mass can
move from one por e classto another.

In structured soils, hydrologic and
concentration gradientsdrive porewater
NOM preferentially into microporeswhere
it isphysically protected from microbes.

Large porestend to carry NOM deeper into
the soil profile, whereas small poresact as
a sour ce/sink and store NOM for potentially
long time periods.

Small poresfrequently constitute more than
90% of thetotal soil porosity.
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Importance of soil microporosity in
the sequestration of NOM

Large pores Fine textured Ultisol

Small pores
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Preferential lateral flow can diminish the potential for organic C sequestration in subsoils
dueto significant bypass of the soil matrix and decreased C resident timesin the soil profile.

On the other hand, preferential vertical flow in deep mature soils can drive organic C
farther into the soil profile thereby enhancing sequestration.

Competitive solid phase sorption reactions minimize the flux of carbon during lateral
drainage dueto increased porewater residence time within the soil profile.



Approach

« Two background and two enriched plots from each of the four EBIS
sites (16 plots) were instrumented with four tension lysimeters and
four tension-free lysimeters. Two of each type were placed within the
A- and B-horizons of the soil profiles.

« Fifty liters of anonreactive Br tracer was evenly applied over each of
the instrumented areas using a backpack sprayer.

« Solution samplers were monitored during all storm events and
analyzed for Br, TOC, and inorganic anions. Select samples were
analyzed for 4C.

» Bulk soil samples from each plot were characterized for select physical
and chemical properties and organic C sorption isotherms were
guantified for each subsoil.



Monitoring scheme
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Multi-porosity sampling capabilities

High tension solution
sampler for monitoring
micropore domains

Zero/low tension solution sampler
for monitoring macropore and
mesopore domains

Solution Sampler

Glass Lip

~Coarse or Fine
Fritted Glass

Alr Inlet

aolution
Cutlet




Example storm driven Br breakthrough in Inceptisol soil profiles
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Example storm driven Br breakthrough in Ultisol soil profiles
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Example storm driven DOC concentrations in Inceptisol soil profiles
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Example storm driven DOC concentrations in Ultisol soil profiles
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Storm driven DOC fluxes in Inceptisol and Ultisol soil profiles (lysimeter scale)
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Summation of DOC fluxes in Inceptisol and Ultisol soil profiles (lysimeter scale)
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D“C signatures in select pore water from Inceptisol and Ultisol soil profiles

Enriched plots have higher D*C
signatures in pore water than
background plots.

Pore water from Haw Ridge has a
higher D**C signatures relative to
Walker Branch which is consistent
with the more rapid flow and
transport characteristics and lower
organic C retention capacity of

HR (dlidesto follow).

Pore water from WB has alower
D“C signature relative to HR with
B-horizon samples showing no
evidence of enrichment. This may
be related to the higher organic C
retention capacity of WB (dlidesto
follow).
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Organic C sorption isotherms

= A shake-batch method was utilized to construct dissolved organic carbon
Isotherms on the Ultisol and Inceptisol subsoils from the various EBIS plots.

» Select physical and chemical properties of the subsoil samples were
determined in an effort to cross-correlate soil properties with differencesin
DOC solid-phase adsorption.



Carbon sorption isotherms on Ultisol soil profiles
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Carbon sorption isother ms on I nceptisol soil profiles
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| mportance of Fe-oxides and clay content
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Highly weathered subsoils often contain
appreciable clay that is heavily coated with
amor phous and crystalline Fe-oxides.

DOC sorption isdrastically higher in soils
From Fe-oxiderich siteson the ORR.

Fe-oxide coatings on mineral surfaces
strongly sequester porewater organic C
which limits bioavailability and transport
to groundwater.

Numer ous studies with synthetic Fe-oxides
show similar results,



Influence of soil Fe-oxides on organic C sorption
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Organic C sorption on the 22 soils used
in this study was strongly correlated with
the Fe-oxide content of the media.
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Summary

Non-reactive Br tracer provides useful datafor quantifying
flow and transport processes at the various sites.

Organic C fluxes at each site are consistent with the
hydrodynamics and geochemical retention capacities of the
soils.

Organic C sorption is strongly correlated with the soil Fe-
oXide content.

Pore water D*C signatures look promising. Enriched plots
clearly show higher values than background plots, and the
data is consistent with site hydrological and geochemical
characteristics.



