Turnover and Life Spans of Fine Root Carbon in a 14C-labeled Forest Ecosystem.

Joslin, J.D.¹, J.B. Gaudinski², M.S. Torn³, C. Swanston⁴, P.J. Hanson⁵, and D.E. Todd⁶

¹Belowground Forest Research, ²University of California-Santa Cruz, ³Lawrence Berkeley National Laboratory, ⁴Lawrence Livermore National Laboratory-CAMS, ⁵Oak Ridge National Laboratory.

INTRODUCTION

A multi-year experiment is quantifying pathways and rates of C transfer by studying upland-oak plots in a mature forest in eastern Tennessee, USA, which was fortuitously labeled with a large pulse of carbon 14 in 1969 (Huntzinger et al., 2002). This labeling event (Figure 1) allowed a unique opportunity to trace C flows through this ecosystem on timescales of 2 to many years. This multi-disciplinary experiment (the Enriched Background Isotope Study [EBIS]) is using labeled litter, roots, and soils to study transfers of this 14C from sources (leaf, root litter) to sinks (respiration, leaching, or stable soil forms).

The reconstructed 14C concentration timeline in Figure 1 indicates:

- The spike was very strong in 1999.
- Levels have returned to near-background subsequently.

The study presented here-part of this larger research project—focuses on the quantification of the turnover rates for fine roots in this forest.

METHODS

Soil cores from plots of 2 cm in diam. were collected at 5 depth intervals to 60 cm in January/February of 2000, 2001, and 2002. Fine roots (< 2 mm) were sorted into size classes (live and dead).

Radiocarbon labeling—expressed as 14C/12C—was determined on graphite targets of composited root samples. Radiocarbon labeling was determined on graphite targets of composited root samples.

RESULTS

Figure 3. The mean 14C concentrations of fine roots at different depth (0–15 cm) and year (2000 vs. 2001) are shown.

- Dead roots at Time Zero consistently had higher 14C values than living roots.

DISCUSSION

The diagram in Figure 6 demonstrates important implications of the patterns observed in Figure 3 and 4.

1. Dead roots from Year 0 (2000) had a higher mean 14C (~410) than did live roots (~370). The dead root pool must have already received a high input of roots with high 14C that formed during the 1999 spike year.

2. Live pools showed a very small change in 14C between Year 0 and Year 1 (~370 to ~330). Turnover in this portion of the live pool must have been quite slow and life spans long (>3 years).

3. Large changes in the dead 14C between Year 0 and Year 1 (~410 to ~310) can only be explained by a large input of very short-lived roots that both formed and died during Year Zero (2000) growing season. These short-lived roots would have a relatively low 14C (~180)—capable of shifting the mean 14C of the total dead pool this much—and a mean lifespan of about 3 months.

4. Note that implication #3 is consistent with implication #1. Therefore 2 things must be true:

- A large portion of the Year 1 dead root pools consist of very short-lived roots that both formed and died during Year Zero (2000) growing season.

- The live root pool must contain both roots that both turnover very quickly and roots that live for several years.

REFERENCES

ACKNOWLEDGMENTS

The EBIS project is sponsored by the U.S. Department of Energy, Office of Science as a part of the Terrestrial Carbon Processes (TCP) program. Work performed by Oak Ridge National Laboratory personnel was conducted under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

CONCLUSIONS

*** These data suggest the existence of at least two types of fine roots with radically different turnover times:

1. One type consists of fine roots that live less than the length of one full growing season—average turnover time is approximately 3 months.

2. The other type is considerably longer-lived, probably living 2 to 15 years, averaging between 3 and 5 years.

*** Fine roots of the SAME diameter size class can have very different life spans, form, and function.